
Greg Miller1, Carl Carmichael1, Gary Swift1, Chen Wei Tseng1

Mitigation, Design Flow
and Troubleshooting a
Soft Processor in a
Complex FPGA

1Xilinx, Inc., San Jose, CA/ Longmont, CO

MAPLD 2008

Miller 2 MAPLD 2008/Session D

Objectives
Create a robust soft processor design in a complex
FPGA using existing tools.

• Mitigated Design Flow
― Create a repeatable design flow (full mitigation) using a Soft Processor based
system

• Simulation of Sensitivity in Radiation Environment using
dynamic tests
― Use fault injection (on hardware) to simulate and troubleshoot potential problems
― Dynamic test design using a Simple IO test (Processor Driven)

Miller 3 MAPLD 2008/Session D

DUT Block Diagram

Funcmon

SRAM
Controller

MDM

D-LMB I-LMB

Microblaze/PPC

UART-Lite

RS232

JTAG

FPGA
(4VFX60 Xilinx Tested)

Dev Board

BRAM

“PLB” Memory
BRAM scrubber”

• Uses XTMR (Xilinx Triple Modular Redundancy) Flow
• Scrubber Block RAM wrappers for each type of BRAM

GPIO

GPIO monitor in FM

“GPIO Toggle Test”

SRAM
(Emulation)

“Processor
Messages”

“Heartbeat”

“Debug”

“D-LMB Memory Test”

“Executable Code”

PLB BUS(A.K.A “XPS” Bus)

Miller 4 MAPLD 2008/Session D

Functional Block (simplified) Diagram
• Code in DUT Block RAM (For this test) – Assembly only
• Watchdogs (Memory Test pattern Pass/Fail) - optional
• Control of Fault Injection Engine (Configmon)

Record subset of SRAM Pattern

SRAM WD
Watchdogs
(Execution/GPIO Toggle)
-Counters (GPIO/EXE)
-Resets
-Failure counts
-Address/Data (code
record)
-Fault Injection control with
Configmon

FPGAs
(V2P70)

GPIO Toggle

FM
Register File

EXE Signal

“Alive Signal”

Addr/Data
DUT
4VFX60
Microblaze
(XTMR)

8-bit data

Reset to DUT

Configmon
(Fault Injector)
(V2P70)

Fault Injection Communication

-Records errors/Functional Data-

Miller 5 MAPLD 2008/Session D

Mitigation Flow Overview

• Use the XTMR (Xilinx Triple Modular Redundancy) flow
techniques to mitigate the MicroBlaze Soft logic

MicroBlaze designs consist of the bus structure (PLB) –
Triplicated
MicroBlaze Core - Triplicated
Surrounding peripherals such as UART, SRAM Controller,
GPIO, etc… - Triplicated
All IO - Triplicated
“BRAM scrubber” on PLB bus BRAM/DLMB

Miller 6 MAPLD 2008/Session D

Overall EDK / TMRTool Design Flow

System Design
EDK

Netlist
Creation

TMR Tool

NGDBuild

MAP

PAR

BitGen / BitInit

Design Entry
EDK/ISE (9.2i)

XTMR Conversion
TMR Tool(9.2i)

Implementation
ISE(9.2i)

.ngc

.bmm

.elf

.edf

(Manual edit) .ucf

.ngo

BRAM Scrubber
Macro Replacement

Microblaze (PLB/LMB)

“ASM” Compiler

Miller 7 MAPLD 2008/Session D

Processor Fault Injection Overview

• Used to inject configuration faults to test mitigated strength of the Soft Processor
• Configuration Monitor can take commands from Funcmon to coordinate bit upset locations

• Any monitoring of functionality is done via a Functional Monitor FPGA
• Funcmon sends commands to fault injector for maximum control

 - Configmon can then record bit upset locations
• Block RAM content can not be scrubbed via the configuration port – use

Block RAM scrubber (BRAM content not affected by Fault injection)
• See XAPP962 “Single Event Upset Mitigation for Xilinx FPGA Block

Memories”
• Fault inject the FX60 in ~60minutes (depends on number of toggles to declare a pass)
• “Back Annotate” Failure bits for further analysis (gives net name up failing bits)
• Simple ASM design (no “C”). Eliminates corruption of Code via a write
• RAM is “Read Only” (for this simplified test)

Controlled by Funcmon
Coordination of Failures before next bit
Must pass several “Toggles” before

declaring a pass (This test - 16)

Miller 8 MAPLD 2008/Session D

Fault Injection : Types Of Errors

(Each type of error seen after a single fault)

•Types of errors Recorded/Corrected

(Bigger hammer each time)

1). Reset Only – Reset “fixes” processor
2). Scrub + reset – (A scrub of the faulty bit fixes
processor)
3). Reconfigure – The part must be reconfigured
4). “Re-Load of RAM” – Eliminated in this test
with “read Only” (will need to re-visit)

Miller 9 MAPLD 2008/Session D

Funcmon High-Level Fault Injection Flow (Simplified)
Test Microblaze

Function

Remove Fault

Reset Design

PASS

Fail – Fix:
Reset/Scrub/

Config

Fail

Log Failure Type

Reconfig

Test Microblaze
Function

Inject Fault

PASS
Pass - Fix

Miller 10 MAPLD 2008/Session D

Fault Injection Results

FM -> scrub->wait after each FI.
Reconfig after each error. (Isolation of
SPF bits) – EDK Synthesis
settings/SRL16 removed

4 0 0 4 0 9 23616
XTMR (Area Group)
(SRL16s removed –
Synthesis Script)

ASM -> Internal RAM execution
(Simple Funcmon – reset after each
bit)

1099 0 4 288 807 9 8958 XTMR (External
RAM)

ASM -> External RAM execution
(Simple Funcmon – reset after each
bit)

28315 0 228 27060 1027 9 2120 Single String(Ext)

FM -> scrub->wait after each FI.
Reconfig after each error. (Isolation of
SPF bits)

 9 0 1 6 2 9 11224 XTMR (Internal) No
Area Group

FM -> scrub->wait after each FI.
Reconfig after each error. (Isolation of
SPF bits)

8 0 2 6 0 9 11224 XTMR (Area Group)

Simple ASM Program Only (Internal
RAM) wait after each FI. Reconfig
after each error. (Isolation of SPF bits)

24148 0 887 22047 1214 9 2778 Single String(Int
RAM)

Notes/Back Annotate Total FM Failures
(SEFIs not counted) FM4

Bits
FM

CFG
Bits

FM
Scrub
Bits FM Rst Bits SEFIs Slices(Total) Tool/Type

Miller 11 MAPLD 2008/Session D

Tips for high reliability mitigation

• Triplicate all logic
•Triplicate IO
―Separate each domain into different banks

• Eliminates IO “SEFI”
• Use “more robust” synthesis settings in EDK (not default) –
script needed.
• Use a BRAM scrubber
•Turn off Global Optimization in MAP
 Fault inject the design
― Use fault injection (on hardware) to simulate and troubleshoot potential problems
before beam testing

Miller 12 MAPLD 2008/Session D

Challenges

• Had to move to a “ROM” with Assembly structure to avoid writes (for now)

― Does not allow for full reset as RAMs may get corrupted
― Will look into workaround
― Allows focus on the MicroBlaze core only

• Only partial reset
― May be due to SRL16s/Distributed RAMs (see next bullet)
― Fix any errors by reconfigure (for bit isolation)

• Bits that fail in the Fault injector may be due to “previous bits” together
― Need to add a recording feature to go back and isolate multi failures and associate bits with

each other.
• External RAM – needs to be re-implemented and tested

― Move the IOs to different banks
• These tests were for Fault Injection bit studies only.

― Not a “real life” test
― However, does give insight into failures seen in beam
― Will implement beam “simulator”

Miller 13 MAPLD 2008/Session D

Lessons Learned

• Do a single Version of the design first to work out the hardware/software bugs
• Use a netlist viewer to inspect the triplicated design to make sure it is constructed as

expected
• Remove ChipScope
• Remove DCMs – put mitigation back in later
• Use Fault Injection testing before beam testing
• Separate Triplicated IOs into different banks (to do next)
• Use a better test than a single bit toggle (implement later)
• Use “Bit Isolation” to isolate actual failing bits (re-sync design)
• Past bit may cause failures
• After an injection, the circuit needs time to “recover” – vote out the failures in loops
• Area groups in constraint file, may help
• Turn off Global Optimization in MAP – Can remove voters
• Turn off Clock Enables in Synthesis if possible
• Change Synthesis settings in EDK (With script) i.e. better state machine synthesis
• Use simple ASM program for now. “C” may cause issues as the vector tables are re-written

on boot up and may cause problems. Looking into this.
• With bit injected, use “smoke test” (knock out a domain) to determine domain reliance failure
• Running the same design can cause different bit failures

― Run the same design and compare reports

Miller 14 MAPLD 2008/Session D

Conclusion/Future work

• Mitigation of a soft processor in a complex FPGA is a viable solution
― Still working out remaining mitigated faults

• Care must be taken to mitigate properly
―Testing (Fault injection)
― Proper tool flow must be understood
Future work :

• Still refining Virtex 4 Soft processor mitigation techniques
• Refine flow for all users

• Publish design flow
• Add more complexity to system tests
• Make Fault Injection more reliable and consistent
• “Simulate Beam” with scripting (Upsets/scrub cycle)

―External memory (More testing) – SRAM/SDRAM/DDR
• Look into Write Enable RAM corruption

―Cache/DCMs etc… (more complexity)

Miller 15 MAPLD 2008/Session D

References

1. “Robust FPGA/Embedded-Processor Design: Design Flow for SEU Mitigation” - Greg Miller, Carl

Carmichael, Gary Swift, MAPLD 2006
2. Rezgui S., “SEU Mitigation of a Soft Embedded Processor in the Virtex-II FPGAs”, September 2005
3. “A Test Methodology for Determining Space-Readiness of Xilinx SRAM-based FPGA Designs” Heather

Quinn, Paul Graham, Keith Morgan, Michael Caffrey, and Jim Krone
4. Upset Susceptibility and Design Mitigation of PowerPC405 Processors Embedded in Virtex-II Pro

FPGAs” – Swift/Allen/George/Rezgui/Carmichael/Chayab – MAPLD 173 (2005)
5. “Upset Characterization of the PowerPC405 Hard-Core Processor

Embedded in Xilinx Virtex-II Pro Field Programmable Gate Arrays” –
Swift/Petrick/Chayab/George/Allen/Farmanesh - NSREC Data Workshop (2006)

6. “An Upset-Mitigated FPGA-based High Performance Compute Platform for Space Applications” –
MAPLD 177 (2006) – Swift/Allen and SEU Consortium

7. Lima, F., Carmichael, C., Fabula, J., Padovani, R. and Reis, R., "A Fault Injection Analysis of
Virtex® FPGA TMR Design Methodology", RADECS’01, September 2001.

8. Carmichael C., “Triple Module Redundancy Design Techniques for Virtex FPGAs”,
http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf, Xilinx Application Note XAPP197, November
2001.

9. TMR Tool User Guide, UG156, Version 6.2.3, http://support.xilinx.com/products/milaero/ug156.pdf,
Xilinx Inc., September 2004.

Miller 16 MAPLD 2008/Session D

Additional Information

Miller 17 MAPLD 2008/Session D

BRAM Mitigation Methodology

• Apply TMR on the used BRAMs
• Create a BRAM scrubber macro (to replace a single port

BRAM)
• Determine BRAM replacement locations in TMRTool

• Each Block RAM primitive collection (may contain several

primitives) is replaced with the Block RAM scrubber
macro.

• Two types of Internal BRAM used
― LMB (Local Memory Bus)
― PLB (Hangs off of the PLB Bus)

Miller 18 MAPLD 2008/Session D

Setup/Fault Injection Test types

 Design Setup :
-All code is running from the PLB Block RAM
-Simple ASM code to control toggle of GPIO bit (no writes allowed)
-Reset After every injected fault – Simple Funcmon
-Scrub, reset, wait after each fault injection, reconfig after each error (bit isolation)

 NOTE : Not realistic for beam testing, but useful to determine single
 points of failure.

16 passes (toggles) are required for a pass (For each bit)

Test Types shown in this presentation:
1). Single String – Non triplicated with simple reset after FI
2). XTMR – External RAM with simple reset after FI
3). Single String Internal RAM– With FI and scrub after every bit/Reconfig after every
Failure
4). XTMR Internal RAM (no AG) - With FI and scrub after every bit/Reconfig after every
Failure
5). XTMR Internal RAM (AG) - With FI and scrub after every bit/Reconfig after every
Failure

