2 XILINX

Mitigation, Design Flow

and Troubleshooting a ..MAPLD
Soft Processor in a —

Complex FPGA

Greg Miller!, Carl Carmichael', Gary Swift!, Chen Wei Tseng’

MAPLD 2008

1Xilinx, Inc., San Jose, CA’ Longmont, CO

Objectives

Create a robust soft processor design in a complex
FPGA using existing tools.

« Mitigated Design Flow

— Create a repeatable design flow (full mitigation) using a Soft Processor based
system

e Simulation of Sensitivity in Radiation Environment using
dynamic tests
— Use fault injection (on hardware) to simulate and troubleshoot potential problems
— Dynamic test design using a Simple 10 test (Processor Driven)

Miller 2 MAPLD 2008/Session D

DUT Block Diagram

e Uses XTMR (Xilinx Triple Modular Redundancy) Flow
e Scrubber Block RAM wrappers for each type of BRAM

FPGA
(4VFX60 Xilinx Tested)

JTAG MDM

o

[-LMB

"

Microblaze/PPC

D-LMB

SRAM
Controller

“Debug”
SRAM
(Emulation)
I PLB BUS(A.K.A “XPS” Bus)
| A | UART-Lite “Executable Code’
— “Processor \
GPIO monitor in FM RS232 Messages’
“ " “PLB” Memory
Dev Board Heartbeat BRAM scrubber’

Miller

“GPIO Toggle Test”

MAPLD 2008/Session D

Functional Block (simplified) Diagram

e Code in DUT Block RAM (For this test) — Assembly only
 Watchdogs (Memory Test pattern Pass/Fail) - optional
e Control of Fault Injection Engine (Configmon)

@cord subset of SRAM P@

8-bit data) /
EXE Signal

»| Watchdogs
DUT (Execution/GPIO Toggle) EM
4VFX60 Addr/Data -Counters (GPIO/EXE)
Microblaze | -Resets Register File
(XTMR) > GPIOToggle | = signa” | -Failure counts
< -Address/Data (code /
Reset to DUT record)
-Fault Injection control with -Records errors/Functional Data-
Configmon

FPGAs ot | -

onfigmon Fault Injection Communication
(V2P70) _} (Fault Injector)

(V2P70)

Miller 4 MAPLD 2008/Session D

Mitigation Flow Overview

e Use the XTMR (Xilinx Triple Modular Redundancy) flow
techniques to mitigate the MicroBlaze Soft logic

>

>
>

YV VY

MicroBlaze designs consist of the bus structure (PLB) -
Triplicated

MicroBlaze Core - Triplicated

Surrounding peripherals such as UART, SRAM Controller,
GPIO, efc... - Triplicated

All [O - Triplicated
“BRAM scrubber” on PLB bus BRAM/DLMB

Miller 5 MAPLD 2008/Session D

Overall EDK / TMRTool Design Flow

.
D B NGDBuild

l

) .ngc
Netlist ngo g
Creation
g | 1y

System Design
EDK

.bmm
e Manual edit

“ASM” Compiler lf

Design Entry XTMR Conversion Implementation
EDKI/ISE (9.2i) TMR Tool(9.2i) ISE(9.21)

Miller 6 MAPLD 2008/Session D

BitGen / Bitlnit

Processor Fault Injection Overview

Controlled by Funcmon
» Coordination of Failures before next bit
»Must pass several “Toggles” before
declaring a pass (This test - 16)

Used to inject configuration faults to test mitigated strength of the Soft Processor
Configuration Monitor can take commands from Funcmon to coordinate bit upset locations

Any monitoring of functionality is done via a Functional Monitor FPGA
Funcmon sends commands to fault injector for maximum control
- Configmon can then record bit upset locations
« Block RAM content can not be scrubbed via the configuration port — use
Block RAM scrubber (BRAM content not affected by Fault injection)
« See XAPP962 “Single Event Upset Mitigation for Xilinx FPGA Block
Memories”
Fault inject the FX60 in ~60minutes (depends on number of toggles to declare a pass)
“Back Annotate” Failure bits for further analysis (gives net name up failing bits)
Simple ASM design (no “C”). Eliminates corruption of Code via a write
RAM is “Read Only” (for this simplified test)

Miller 7 MAPLD 2008/Session D

Fault Injection : Types Of Errors

(Each type of error seen after a single fault)

*Types of errors Recorded/Corrected
(Bigger hammer each time)

1). Reset Only — Reset “fixes” processor

2). Scrub + reset — (A scrub of the faulty bit fixes
processor)

3). Reconfigure — The part must be reconfigured
4). “Re-Load of RAM” — Eliminated in this test
with “read Only” (will need to re-visit)

Miller 8 MAPLD 2008/Session D

Funcmon High-Level Fault Injection Flow (Simplified)

Miller

Test Microblaze
Function

Inject Fault

Test Microblaze

Function

Remove Fault

— Reset Design

Fail Fail — Fix:
—p Reset/Scrub/
Config
Pass - Fix

Log Failure Type

Reconfig

MAPLD 2008/Session D

Fault Injection Results

FM FM .
Tool/Type Slices(Total) SEFIs FM Rst Bits Scrub CFG l;}’f: ggﬁi il\ft Sgﬂﬁtrjfl) Notes/Back Annotate
Bits Bits
ASM -> External RAM execution
Single String(Ext) 2120 1027 | 27060 228 0 28315 | (Simple Funcmon — reset after each
bit)
ASM -> Internal RAM execution
XTMR (External .
8958 807 288 4 0 1099 Simple Funcmon — reset after each
RAM) by
Simple ASM Program Only (Internal
Single String(Int RAM) wait after each Fl. Reconfig
2778 1214 | 22047 887 0 24148 . .
RAM) after each error. (Isolation of SPF bits)
FM -> scrub->wait after each FI.
L i i L 11224 2 6 1 0 9 | Reconfig after each error. (Isolation of
FM -> scrub->wait after each FI.
XTMR (Area Group) 11224 0 6 2 0 8 | Reconfig after each error. (Isolation of
SPF bits)
XTMR (Area Group) FM -> scrub->wait after each FlI.
(SRL16s removed — 23616 0 4 0 0 4 ggfz"g‘i‘;’g iﬁggiaggrigg;is('so'a“o“ of
SETE S e, settings/SRL16 removed
Miller 10 MAPLD 2008/Session D

Tips for high reliability mitigation

e Triplicate all logic
Triplicate 10

—Separate each domain into different banks
 Eliminates |O “SEF/I"

 Use “more robust” synthesis settings in EDK (not default) —
script needed.

» Use a BRAM scrubber
«Turn off Global Optimization in MAP

Fault inject the design

— Use fault injection (on hardware) to simulate and troubleshoot potential problems
before beam testing

Miller 11 MAPLD 2008/Session D

Challenges

Had to move to a “ROM” with Assembly structure to avoid writes (for now)
— Does not allow for full reset as RAMs may get corrupted
— Will look into workaround
— Allows focus on the MicroBlaze core only
Only partial reset
— May be due to SRL16s/Distributed RAMs (see next bullet)
— Fix any errors by reconfigure (for bit isolation)
Bits that fail in the Fault injector may be due to “previous bits” together

— Need to add a recording feature to go back and isolate multi failures and associate bits with
each other.

External RAM - needs to be re-implemented and tested
— Move the 10s to different banks
These tests were for Fault Injection bit studies only.
— Not a “real life” test
— However, does give insight into failures seen in beam
— Will implement beam “simulator”

Miller 12 MAPLD 2008/Session D

| essons Learned

Do a single Version of the design first to work out the hardware/software bugs

Use a netlist viewer to inspect the triplicated design to make sure it is constructed as
expected

Remove ChipScope

Remove DCMs - put mitigation back in later

Use Fault Injection testing before beam testing

Separate Triplicated IOs into different banks (to do next)

Use a better test than a single bit toggle (implement later)

Use “Bit Isolation” to isolate actual failing bits (re-sync design)

Past bit may cause failures

After an injection, the circuit needs time to “recover” — vote out the failures in loops
Area groups in constraint file, may help

Turn off Global Optimization in MAP — Can remove voters

Turn off Clock Enables in Synthesis if possible

Change Synthesis settings in EDK (With script) i.e. better state machine synthesis

Use simple ASM program for now. “C” may cause issues as the vector tables are re-written
on boot up and may cause problems. Looking into this.

With bit injected, use “smoke test” (knock out a domain) to determine domain reliance failure
Running the same design can cause different bit failures

— Run the same design and compare reports

Miller 13 MAPLD 2008/Session D

Conclusion/Future work

« Mitigation of a soft processor in a complex FPGA is a viable solution
— Still working out remaining mitigated faults

o Care must be taken to mitigate properly
—Testing (Fault injection)
— Proper tool flow must be understood

Future work :

« Still refining Virtex 4 Soft processor mitigation techniques
* Refine flow for all users

* Publish design flow

» Add more complexity to system tests

» Make Fault Injection more reliable and consistent

o “Simulate Beam” with scripting (Upsets/scrub cycle)

—External memory (More testing) - SRAM/SDRAM/DDR
 Look into Write Enable RAM corruption

—Cache/DCMs etc... (more complexity)
Miller 14 MAPLD 2008/Session D

References

“Robust FPGA/Embedded-Processor Design: Design Flow for SEU Mitigation” - Greg Miller, Carl
Carmichael, Gary Swift, MAPLD 2006

Rezgui S., “SEU Mitigation of a Soft Embedded Processor in the Virtex-Il FPGAs”, September 2005
“A Test Methodology for Determining Space-Readiness of Xilinx SRAM-based FPGA Designs” Heather
Quinn, Paul Graham, Keith Morgan, Michael Caffrey, and Jim Krone

Upset Susceptibility and Design Mitigation of PowerPC405 Processors Embedded in Virtex-1l Pro
FPGAs” — Swift/Allen/George/Rezgui/Carmichael/Chayab — MAPLD 173 (2005)

“Upset Characterization of the PowerPC405 Hard-Core Processor
Embedded in Xilinx Virtex-Il Pro Field Programmable Gate Arrays” -
Swift/Petrick/Chayab/George/Allen/Farmanesh - NSREC Data Workshop (2006)

“An Upset-Mitigated FPGA-based High Performance Compute Platform for Space Applications” -
MAPLD 177 (2006) — Swift/Allen and SEU Consortium

Lima, F., Carmichael, C., Fabula, J., Padovani, R. and Reis, R., "A Fault Injection Analysis of
Virtex® FPGA TMR Design Methodology", RADECS’01, September 2001.

Carmichael C., “Triple Module Redundancy Design Techniques for Virtex FPGAs”,
http://www.xilinx.com/bvdocs/appnotes/xappl197.pdf, Xilinx Application Note XAPP197, November
2001.

TMR Tool User Guide, UG156, Version 6.2.3, http://support.xilinx.com/products/milaero/ug156.pdf,
Xilinx Inc., September 2004.

Miller 15 MAPLD 2008/Session D

Additional Information

Miller 16 MAPLD 2008/Session

BRAM Mitigation Methodology

Apply TMR on the used BRAMs

Create a BRAM scrubber macro (to replace a single port
BRAM)

Determine BRAM replacement locations in TMRTool

|

Each Block RAM primitive collection (may contain several
primitives) is replaced with the Block RAM scrubber
macro.

Two types of Internal BRAM used
— LMB (Local Memory Bus)
— PLB (Hangs off of the PLB Bus)

Miller 17 MAPLD 2008/Session D

Setup/Fault Injection Test types

Design Setup :

-All code is running from the PLB Block RAM

-Simple ASM code to control toggle of GPIO bit (no writes allowed)

-Reset After every injected fault — Simple Funcmon

-Scrub, reset, wait after each fault injection, reconfig after each error (bit isolation)
NOTE : Not realistic for beam testing, but useful to determine single
points of failure.

16 passes (toggles) are required for a pass (For each bit)

Test Types shown in this presentation:

1). Single String — Non triplicated with simple reset after Fl

2). XTMR - External RAM with simple reset after Fl

3). Single String Internal RAM- With Fl and scrub after every bit/Reconfig after every
Failure

4). XTMR Internal RAM (no AG) - With FI and scrub after every bit/Reconfig after every
Failure

5). XTMR Internal RAM (AG) - With Fl and scrub after every bit/Reconfig after every
Failure

Miller 18 MAPLD 2008/Session D

